资源类型

期刊论文 1913

年份

2024 1

2023 126

2022 145

2021 144

2020 118

2019 128

2018 113

2017 105

2016 83

2015 102

2014 74

2013 79

2012 51

2011 71

2010 69

2009 69

2008 61

2007 71

2006 53

2005 42

展开 ︾

关键词

指标体系 12

系统工程 10

固体氧化物燃料电池 7

开放的复杂巨系统 7

燃料电池 7

系统集成 7

钱学森 7

技术体系 6

可持续发展 5

系统科学 5

仿真 4

战略性新兴产业 4

智能制造 4

标准体系 4

标准化 4

电力系统 4

电动汽车 4

系统 4

Agent 3

展开 ︾

检索范围:

排序: 展示方式:

Failure mode investigation of fuel cell for vehicle application

Zhongjun HOU, Renfang WANG, Keyong WANG, Weiyu SHI, Danming XING, Hongchun JIANG

《能源前沿(英文)》 2017年 第11卷 第3期   页码 318-325 doi: 10.1007/s11708-017-0488-0

摘要: The durability of proton exchange membrane fuel cells (PEMFCs) has been posing a key technical challenge to commercial spread of fuel cell vehicles (FCVs). To improve the durability, it is necessary to optimize the fuel cell system (FCS) design against failure modes. The fuel cell durability research method at FCS scale was exhibited, and the failure modes of fuel cell were experimentally investigated in this paper. It is found that the fuel cell dry operation, start/stop cycle and gas diffusion layer (GDL) flooding are typical failure modes of fuel cells. After the modifications against the failure modes, the durability of FCSs is improved to over 3000 h step by step.

关键词: proton exchange membrane fuel cell (PEMFC)     fuel cell system (FCS)     durability     failure mode     fuel cell vehicle (FCV)     carbon corrosion     water management    

Multi-objective optimization of molten carbonate fuel cell system for reducing CO

Ramin ROSHANDEL,Majid ASTANEH,Farzin GOLZAR

《能源前沿(英文)》 2015年 第9卷 第1期   页码 106-114 doi: 10.1007/s11708-014-0341-7

摘要: The aim of this paper is to investigate the implementation of a molten carbonate fuel cell (MCFC) as a CO separator. By applying multi-objective optimization (MOO) using the genetic algorithm, the optimal values of operating load and the corresponding values of objective functions are obtained. Objective functions are minimization of the cost of electricity (COE) and minimization of CO emission rate. CO tax that is accounted as the pollution-related cost, transforming the environmental objective to the cost function. The results show that the MCFC stack which is fed by the syngas and gas turbine exhaust, not only reduces CO emission rate, but also produces electricity and reduces environmental cost of the system.

关键词: molten carbonate fuel cell (MCFC)     multi-objective optimization (MOO)     Pareto curve     genetic algorithm     CO2 separation    

Part-load, startup, and shutdown strategies of a solid oxide fuel cell-gas turbine hybrid system

Yang LI, Yiwu WENG, Shilie WENG

《能源前沿(英文)》 2011年 第5卷 第2期   页码 181-194 doi: 10.1007/s11708-011-0149-7

摘要: Current work on the performance of a solid oxide fuel cell (SOFC) and gas turbine hybrid system is presented. Each component model developed and applied is mathematically defined. The electrochemical performance of single SOFC with different fuels is tested. Experimental results are used to validate the SOFC mathematical model. Based on the simulation model, a safe operation regime of the hybrid system is accurately plotted first. Three different part-load strategies are introduced and used to analyze the part-load performance of the hybrid system using the safe regime. Another major objective of this paper is to introduce a suitable startup and shutdown strategy for the hybrid system. The sequences for the startup and shutdown are proposed in detail, and the system responses are acquired with the simulation model. Hydrogen is used instead of methane during the startup and shutdown process. Thus, the supply of externally generated steam is not needed for the reforming reaction. The gas turbine is driven by complementary fuel and supplies compressed air to heat up or cool down the SOFC stack operating temperature. The dynamic simulation results show that smooth cooling and heating of the cell stack can be accomplished without external electrical power.

关键词: solid oxide fuel cell (SOFC)     hybrid system     part-load strategy     startup     shutdown    

Economic analysis of a hybrid solar-fuel cell power delivery system using tuned genetic algorithm

Trina SOM, Niladri CHAKRABORTY

《能源前沿(英文)》 2012年 第6卷 第1期   页码 12-20 doi: 10.1007/s11708-012-0172-3

摘要: An economic evaluation of a network of distributed energy resources (DERs) comprising a microgrid structure of power delivery system in an Indian scenario has been made. The mathematical analysis is based on the application of tuned genetic algorithm (TGA). The analyses for optimal power operation pertaining to minimum cost have been made for two cases in Indian power delivery system. The first case deals with the consumers’ individual optimal operation of DERs, while in the second one, consumers altogether form a microgrid with the optimal supply of power from DERs. The total annual costs for these two cases are found to be economically competitive and encouraging. A reduction of approximately 5.7% in the annual cost has been obtained in the case of microgid system than that in the separately operating consumers’ system for a small locality of India. It is observed that the application of TGA results in a reduction of the minimum cost depicting an improved outcome in terms of energy economy.

关键词: distributed energy resources (DERs)     microgrid     tuned genetic algorithm (TGA)    

A comprehensive assessment on the durability of gas diffusion electrode materials in PEM fuel cell stack

Arunkumar JAYAKUMAR

《能源前沿(英文)》 2019年 第13卷 第2期   页码 325-338 doi: 10.1007/s11708-019-0618-y

摘要: Polymer electrolyte membrane (PEM) fuel cell is the most promising among the various types of fuel cells. Though it has found its applications in numerous fields, the cost and durability are key barriers impeding the commercialization of PEM fuel cell stack. The crucial and expensive component involved in it is the gas diffusion electrode (GDE) and its degradation, which limits the performance and life of the fuel cell stack. A critical analysis and comprehensive understanding of the structural and functional properties of various materials involved in the GDE can help us to address the related durability and cost issues. This paper reviews the key GDE components, and in specific, the root causes influencing the durability. It also envisages the role of novel materials and provides a critical recommendation to improve the GDE durability.

关键词: PEM fuel cell     gas diffusion electrode(GDE)     gas diffusion layer(GDL)     membrane electrode assembly     durability     fuel cell catalyst    

A hybrid fuel cell for water purification and simultaneously electricity generation

《环境科学与工程前沿(英文)》 2023年 第17卷 第1期 doi: 10.1007/s11783-023-1611-6

摘要:

● A novel hybrid fuel cell (F-HFC) was fabricated.

关键词: Flow-through field     Hybrid fuel cell     Polyoxometalates     Water purification     Electricity generation    

TiO supported IrO for anode reversal tolerance in proton exchange membrane fuel cell

《能源前沿(英文)》 2022年 第16卷 第5期   页码 852-861 doi: 10.1007/s11708-021-0811-7

摘要: Fuel starvation can occur and cause damage to the cell when proton exchange membrane fuel cells operate under complex working conditions. In this case, carbon corrosion occurs. Oxygen evolution reaction (OER) catalysts can alleviate carbon corrosion by introducing water electrolysis at a lower potential at the anode in fuel shortage. The mixture of hydrogen oxidation reaction (HOR) and unsupported OER catalyst not only reduces the electrolysis efficiency, but also influences the initial performance of the fuel cell. Herein, Ti4O7 supported IrOx is synthesized by utilizing the surfactant-assistant method and serves as reversal tolerant components in the anode. When the cell reverse time is less than 100 min, the cell voltage of the MEA added with IrOx/Ti4O7 has almost no attenuation. Besides, the MEA has a longer reversal time (530 min) than IrOx (75 min), showing an excellent reversal tolerance. The results of electron microscopy spectroscopy show that IrOx particles have a good dispersity on the surface of Ti4O7 and IrOx/Ti4O7 particles are uniformly dispersed on the anode catalytic layer. After the stability test, the Ti4O7 support has little decay, demonstrating a high electrochemical stability. IrOx/Ti4O7 with a high dispersity has a great potential to the application on the reversal tolerance anode of the fuel cell.

关键词: proton exchange membrane fuel cell (PEMFC)     fuel starvation     cell reverse     reversal tolerance anode     oxygen evolution reaction    

Analysis on carbon emission reduction intensity of fuel cell vehicles from a life-cycle perspective

《能源前沿(英文)》 doi: 10.1007/s11708-023-0909-1

摘要: The hydrogen fuel cell vehicle is rapidly developing in China for carbon reduction and neutrality. This paper evaluated the life-cycle cost and carbon emission of hydrogen energy via lots of field surveys, including hydrogen production and packing in chlor-alkali plants, transport by tube trailers, storage and refueling in hydrogen refueling stations (HRSs), and application for use in two different cities. It also conducted a comparative study for battery electric vehicles (BEVs) and internal combustion engine vehicles (ICEVs). The result indicates that hydrogen fuel cell vehicle (FCV) has the best environmental performance but the highest energy cost. However, a sufficient hydrogen supply can significantly reduce the carbon intensity and FCV energy cost of the current system. The carbon emission for FCV application has the potential to decrease by 73.1% in City A and 43.8% in City B. It only takes 11.0%–20.1% of the BEV emission and 8.2%–9.8% of the ICEV emission. The cost of FCV driving can be reduced by 39.1% in City A. Further improvement can be obtained with an economical and “greener” hydrogen production pathway.

关键词: hydrogen energy     life-cycle assessment (LCA)     fuel cell vehicle     carbon emission     energy cost    

Significant potential of Solid Oxide Fuel Cell systems for distributed power generation and carbon neutrality

《能源前沿(英文)》 2022年 第16卷 第6期   页码 879-882 doi: 10.1007/s11708-022-0850-8

摘要: . {{custom_ra.content}} . . . {{article.highlightEn}} . . . {{article.abstractEn}} . . . {{article.authorSummayEn}} . . . . .

Numerical investigation of the chemical and electrochemical characteristics of planar solid oxide fuelcell with direct internal reforming

Yuzhang WANG, Shilie WENG, Yiwu WENG

《能源前沿(英文)》 2011年 第5卷 第2期   页码 195-206 doi: 10.1007/s11708-011-0148-8

摘要: A fully three-dimensional mathematical model of a planar solid oxide fuel cell (SOFC) with complete direct internal steam reforming was constructed to investigate the chemical and electrochemical characteristics of the porous-electrode-supported (PES)-SOFC developed by the Central Research Institute of Electric Power Industry of Japan. The effective kinetic models developed over the Ni/YSZ anode takes into account the heat transfer and species diffusion limitations in this porous anode. The models were used to simulate the methane steam reforming processes at the co- and counter-flow patterns. The results show that the flow patterns of gas and air have certain effects on cell performance. The cell at the counter-flow has a higher output voltage and output power density at the same operating conditions. At the counter-flow, however, a high hotspot temperature is observed in the anode with a non-fixed position, even when the air inlet flow rate is increased. This is disadvantageous to the cell. Both cell voltage and power density decrease with increased air flow rate.

关键词: planar solid oxide fuel cell (SOFC)     direct internal reforming     chemical reaction     methane     electrochemical    

Scaling up a novel denitrifying microbial fuel cell with an oxic-anoxic two stage biocathode

Peng LIANG, Jincheng WEI, Ming LI, Xia HUANG

《环境科学与工程前沿(英文)》 2013年 第7卷 第6期   页码 913-919 doi: 10.1007/s11783-013-0583-3

摘要: A scaled up microbial fuel cell (MFC) of a 50 L volume was set up with an oxic-anoxic two-stage biocathode and activated semicoke packed electrodes to achieve simultaneous power generation and nitrogen and organic matter removals. An average maximum power density of 43.1 W·m was obtained in batch operating mode. By adjusting the two external resistances, the denitrification in the A-MFC and power production in the O-MFC could be enhanced. In continuous mode, when the hydraulic retention times were set at 6 h, 8 h and 12 h, the removal efficiencies of COD, and total nitrogen (TN) were higher than 95%, 97%, and 84%, respectively. Meanwhile the removal loads for COD, and TN were10, 0.37 and 0.4 kg·(m ·d) , respectively.

关键词: microbial fuel cell (MFC)     oxic-anoxic two stage biocathode     denitrifying    

A mini-microbial fuel cell for voltage testing of exoelectrogenic bacteria

Xiaoxin CAO , Xia HUANG , Xiaoyuan ZHANG , Peng LIANG , Mingzhi FAN ,

《环境科学与工程前沿(英文)》 2009年 第3卷 第3期   页码 307-312 doi: 10.1007/s11783-009-0028-1

摘要: Current methods for testing the electricity generation capacity of isolates are time- and labor-consuming. This paper presents a rapid voltage testing system of exoelectrogenic bacteria called Quickscreen, which is based on a microliter microbial fuel cell (MFC). and were used as the model exoelectrogenic bacteria; that cannot generate electricity was used as a negative control. It was found that the electricity generation capacity of the isolates could be determined within about five hours by using Quickscreen, and that its time was relatively rapid compared with the time needed by using larger MFCs. A parallel, stable, and low background voltage was achieved using titanium as a current collector in the blank run. The external resistance had little impact on the blank run during the initial period. The cathode with a five-hole configuration, used to hydrate the carbon cathode, gave higher cathode potentials than did that with a one-hole configuration. Steady discharge and current interrupt methods showed that the anode mostly contributed to the large internal resistance of the Quickscreen system. However, the addition of graphite felt decreased the resistance from 18kΩ to 5kΩ. This device was proved to be useful to rapidly evaluate the electricity generation capacity of different bacteria.

关键词: microbial fuel cell     exoelectrogenic bacteria     rapid screening    

锌空燃料电池电站

朱梅,徐献芝,苏润

《中国工程科学》 2004年 第6卷 第12期   页码 62-64

摘要:

燃料电池发电技术已经受到人们越来越多的重视。介绍了利用锌空气燃料电池技术建设电站,利用分体式电极技术制造世界上最大的单电池,该电站采用独特的分离循环技术,可以提高电站总体效率。给出建设电站的相关参数。

关键词: 燃料电池     锌空气燃料电池     分体式电极     单电池     分离循环技术    

Abating transport GHG emissions by hydrogen fuel cell vehicles: Chances for the developing world

Han HAO, Zhexuan MU, Zongwei LIU, Fuquan ZHAO

《能源前沿(英文)》 2018年 第12卷 第3期   页码 466-480 doi: 10.1007/s11708-018-0561-3

摘要:

Fuel cell vehicles, as the most promising clean vehicle technology for the future, represent the major chances for the developing world to avoid high-carbon lock-in in the transportation sector. In this paper, by taking China as an example, the unique advantages for China to deploy fuel cell vehicles are reviewed. Subsequently, this paper analyzes the greenhouse gas (GHG) emissions from 19 fuel cell vehicle utilization pathways by using the life cycle assessment approach. The results show that with the current grid mix in China, hydrogen from water electrolysis has the highest GHG emissions, at 3.10 kgCO2/km, while by-product hydrogen from the chlor-alkali industry has the lowest level, at 0.08 kgCO2/km. Regarding hydrogen storage and transportation, a combination of gas-hydrogen road transportation and single compression in the refueling station has the lowest GHG emissions. Regarding vehicle operation, GHG emissions from indirect methanol fuel cell are proved to be lower than those from direct hydrogen fuel cells. It is recommended that although fuel cell vehicles are promising for the developing world in reducing GHG emissions, the vehicle technology and hydrogen production issues should be well addressed to ensure the life-cycle low-carbon performance.

关键词: hydrogen     fuel cell vehicle     life cycle assessment     energy consumption     greenhouse gas (GHG) emissions     China    

Sediment microbial fuel cell with floating biocathode for organic removal and energy recovery

Aijie WANG, Haoyi CHENG, Nanqi REN, Dan CUI, Na LIN, Weimin WU

《环境科学与工程前沿(英文)》 2012年 第6卷 第4期   页码 569-574 doi: 10.1007/s11783-011-0335-1

摘要: A sediment microbial fuel cell (SMFC) with three dimensional floating biocathode (FBC) was developed for the electricity generation and biodegradation of sediment organic matter in order to avoid negative effect of dissolved oxygen (DO) depletion in aqueous environments on cathode performance and search cost-effective cathode materials. The biocathode was made from graphite granules with microbial attachment to replace platinum (Pt)-coated carbon paper cathode in a laboratory-scale SMFC (3 L in volume) filled with river sediment (organic content 49±4 g·kg dry weight). After start-up of 10 days, the maximum power density of 1.00W·m (based on anode volume) was achieved. The biocathode was better than carbon paper cathode catalyzed by Pt. The attached biofilm on cathode enhanced power generation significantly. The FBC enhanced SMFC performance further in the presence aeration. The SMFC was continuously operated for an over 120-day period. Power generation peaked within 24 days, declined gradually and stabilized at a level of 1/6 peak power output. At the end, the sediment organic matter content near the anode was removed by 29% and the total electricity generated was equal to 0.251 g of chemical oxygen demand (COD) removed.

关键词: microbial fuel cell (MFC)     sediment     biocathode     electricity generation     organic removal    

标题 作者 时间 类型 操作

Failure mode investigation of fuel cell for vehicle application

Zhongjun HOU, Renfang WANG, Keyong WANG, Weiyu SHI, Danming XING, Hongchun JIANG

期刊论文

Multi-objective optimization of molten carbonate fuel cell system for reducing CO

Ramin ROSHANDEL,Majid ASTANEH,Farzin GOLZAR

期刊论文

Part-load, startup, and shutdown strategies of a solid oxide fuel cell-gas turbine hybrid system

Yang LI, Yiwu WENG, Shilie WENG

期刊论文

Economic analysis of a hybrid solar-fuel cell power delivery system using tuned genetic algorithm

Trina SOM, Niladri CHAKRABORTY

期刊论文

A comprehensive assessment on the durability of gas diffusion electrode materials in PEM fuel cell stack

Arunkumar JAYAKUMAR

期刊论文

A hybrid fuel cell for water purification and simultaneously electricity generation

期刊论文

TiO supported IrO for anode reversal tolerance in proton exchange membrane fuel cell

期刊论文

Analysis on carbon emission reduction intensity of fuel cell vehicles from a life-cycle perspective

期刊论文

Significant potential of Solid Oxide Fuel Cell systems for distributed power generation and carbon neutrality

期刊论文

Numerical investigation of the chemical and electrochemical characteristics of planar solid oxide fuelcell with direct internal reforming

Yuzhang WANG, Shilie WENG, Yiwu WENG

期刊论文

Scaling up a novel denitrifying microbial fuel cell with an oxic-anoxic two stage biocathode

Peng LIANG, Jincheng WEI, Ming LI, Xia HUANG

期刊论文

A mini-microbial fuel cell for voltage testing of exoelectrogenic bacteria

Xiaoxin CAO , Xia HUANG , Xiaoyuan ZHANG , Peng LIANG , Mingzhi FAN ,

期刊论文

锌空燃料电池电站

朱梅,徐献芝,苏润

期刊论文

Abating transport GHG emissions by hydrogen fuel cell vehicles: Chances for the developing world

Han HAO, Zhexuan MU, Zongwei LIU, Fuquan ZHAO

期刊论文

Sediment microbial fuel cell with floating biocathode for organic removal and energy recovery

Aijie WANG, Haoyi CHENG, Nanqi REN, Dan CUI, Na LIN, Weimin WU

期刊论文